
• </ _: / < _ • • < • - <: _i ::i C •: ?:• :_< :< :-i i:< i'• ? i i iii<i :<i :: i:' L/¢ i ::ij L !:.• i<I./i •<$_i¸,:II{:< :<i i:1!i¸, :i::i:< ¸i!kiiiii:i•i iil i::iiii:j_:ii<iki:ik h!!::<̧. iii_i::ii: <i:i!i!:!:!i :i:<:!ikili_<:_ _ _:_:__:_:_:_:_$_:_:_:::_:_:_:_:_:_:h<:_$_:_?_:_:_::_::_:::::::_<_:_:_:_:_:_:_:_:<:_:_:_::::_::::::::::::::::_:::_::::::_:::::::_:_:_:_:_:_:_:h::

N95. 17606

RE-ENGINEERING THE MISSION LIFE CYCLE WIT[t ABC & IDEF

<i/

i_i_ /

< i_i_

H,

i j• I

5 _

¸ill<
!ii

i!i

'/> •

Daniel Mandl, Michael Rackley
NASA/GSFC Code 511

Greenbelt, MD 20771

Jay Karlin

Viable Systems Inc.

12236 Stoney Bottom Rd. Germantown, ME) 20874

ABSTRACT

The theory behind re-engineering a business process is to remove the non-value added activities

thereby lowering the process cost. In order to achieve this, one must be able to identify where the non-
value added elements are located which is not a trivial task. This is because the non-value added

elements are often hidden in the form of overhead and/or pooled resources. In order to be able to isolate

these non-value added processes from among the other processes, one must first decompose the overall

top level process into lower layers of sub-processes. In addition, costing data must be assigned to each

sub-process along with the value the sub-process adds towards the final product.

IDEF0 is a Federal Information Processing Standard (FIPS) process-modeling tool that allows for

this functional decomposition through structured analysis. In addition, it illustrates the relationship of

the process and the value added to the product or service. The value added portion is further defined in

IDEF1X which is an entity relationship diagramming tool. The entity relationship model is the blueprint

of the product as it moves along the "assembly line" and therefore relates all of the parts to each other

and the final product. It also relates the parts to the tools that produce the product and all of the paper

work that is used in their acquisition.

The use of IDEF therefore facilitates the use of Activity Based Costing (ABC). ABC is an essential

method in a high variety, product-customizing environment, to facilitate rapid response to externally

caused change. This paper describes the work being done in the Mission Operations Division to re-

engineer the development and operation life cycle of Mission Operations Centers using these tools.

1. Introduction

With NASA budgets becoming tighter

each year, the Mission Operations Division

(MOD), which is part of the Mission

Operations and Data Systems Directorate at

Goddard Space Flight Center (GSFC), has

been forced to reevaluate and change how it

has traditionally built Ground Data Systems

(GDS). The MOD, as an enterprise, could

very simply not afford to continue doing
"business as usual".

The traditional GDS approach was to

implement large facilities that supported

multiple, simultaneous missions, with each

facility providing a specific type of

operational support function. The systems

were also typically developed using the

traditional development life cycle model,

with formal reviews for requirements and

design, and large amounts of formal

documentation. This GDS architecture and

development approach may have been

appropriate given the technology and budgets

1327

PAG_ I_ANK _OT F"IP,..ME'_

available at that time, but the MOD could no

longer afford this approach. The

development cycle was proving to be too

long and expensive, and the operations costs

associated with the architecture were

accounting for too much of the overall

budget. The MOD enterprise thus set out to

improve itself in these two areas.

A new GDS approach has been adopted

that takes advantage of the relatively recent

advances in technology and industry

standards. The new concept is to build a

GDS that is tailored to a mission or family of

missions. This required the development of

an underlying architecture approach that was

flexible, scalable and evolvable.

As mentioned, the MOD also set out to

reduce the development life cycle cost.

Analysis showed that while operations costs

could be reduced with the new architecture,

development costs associated with that

architecture were not experiencing

comparable cost savings. This was surprising

to many since the new architecture employs

high levels of software reusability across

missions• The MOD came to the conclusion

that though reusability was an important

factor in reducing costs, any further

substantial savings could only be achieved by

improving the development process itself.

The remainder of this paper focuses

in particular on the MOD's efforts thus far to

improve the process for requirements

analysis. Sections 2 through 4 introduce a

costing method referred to as Activity Based

Costing (ABC), and the Integration

Definition for Modelling (IDEF) modelling

used to support this method• The remaining
sections describe how this method and tool

were applied to the MOD's process

improvement experiment.

2. Process Engineering with ABC;

Pricing a Requirement

In order to manage processes effectively

and to make appropriate decisions about

changing them, a detailed and accurate set of

metrics is essential. Pooled resources tend to

distort the actual cost of a process• When a

resource is shared, the traditional method for

assigning cost to a project is to use the

average cost of past missions, instead of

assigning a cost that is tailored to the true

needs of the project. With the new GDS

approach of tailoring the system to each

mission's needs, a comparable costing method
was needed so that actual mission

requirements could be individually costed,

thus yielding a more accurate overall project
cost estimate.

ABC is a method devised to model the

cost of any process which has first been

decomposed through modeling into primitive

activities that serve as its building blocks.

Once the primitive activities have been

identified, costs can be assigned to those

primitives. Then optimization of the general

process can be performed in forums such as

process improvement committees.

IDEF is a Federal Information Processing

Standard (FIPS) that can be used as a tool to

perform ABC. IDEF actually consists of an

integrated pair of tools: the activity modeler

(1DEF0) and the data modeler (IDEF1X).

IDEF0 is used to model the activities that

occur to produce a product or service and

therefore shows the interrelationships of work

being done in different groups. IDEF 1X

shows what is being passed between

processes by defining a template (i.e. a data

structure) for each item. This provides for

more accurate, rapid and meaningful insight

into interactions among groups. An example

1328

of this mightbeaform sentto requesta
servicefrom anothergroup. IDEF therefore
actsasanintergroupcoordinationtool by
providingtheoverallblueprintfor theentire
process.Thebestway to usethis tool to
coordinatedifferentgroupsis to put IDEF on
a distributednetworkthat is accessibleon-
lineto all participantsin theprocess.

3. The Power of IDEF & ABC

IDEF with ABC allows one to

continuously assess the implementation of an

overall process and thereby determine the

point at which the implementation needs to

be changed in order to reduce costs.

For example in figure 1, a conceptual

process is depicted. The goal is to get from X

to Z, however there is a constraint that

regardless of what path is taken, it must cross

Y as an intermediary point or constraint. For

example, X might be the start of a project and

Z might represent having a design. Before

one can have a design, one must have the

system requirements which is represented by

Y. There are a variety of paths to get from

X to Y, each costing a different amount. The

cost to get from X to Y is the sum of the cost

of each of the activities traversed to get from

X to Y. In this case, path 2 happens to be the

least expensive.

But what happens when a technology

comes along that causes the cost of activity 3

to decrease from $3.00 to $0.50? This causes

the least expensive path from X to Y to

become path 1 instead of path 2. But what

happens if there are thousands of activities

performed by loosely coupled groups, with

each injecting technology to perhaps

automate an activity in their area? Thus what

i _,

!H

path 1

A activity 2

activity 1,7

activity -__ r't $2 path 2 $3 f lr

,, o : /ac; ity,
E o

$2 |r--activity fl •
$2

path n

activity 10
$5

activity 12
$7

G
ivity 11

211Z

ection of Technology
change cost of an activity

thus changing optimum path

$1

X
$2

activit_ D
$1

activity
$2

path 1
activity 2

A $2

path 2

activity 10
$5

G
activity 11

$3

$3 activity 12 _ [] Z

¢ $7

• $1

8 F
path n $2

Figure 1 Locating the Optimal Path - When there are thousands of activities
choosing the optimal path is nontrivial if it must occur on a
continuous basis. Note that least expensive path between X and Y
changes when technology changes cost of underlying task.

1329

lookedrelativelysimple in thisexampleis in
reality very complex!

Whathappenswhen theorganization
choosesto solveproblemswith thesame
processeswithout consideringcostimpactsof
increasingcomplexity?Without examining
theactivitieswithin processesandremoving
non-valueaddedold activities, unneeded
constraintsarecarriedalonglike deadwoodat
extraexpense.For example,it maybe
necessaryto derivethe systemrequirements,
but it maynot alwaysbenecessaryto havea
formal SystemRequirementsReview(SRR)
if thereis a high degreeof reusability.

4. IDEF Nomenclature

Of course, models created through the

use of IDEF are more sophisticated than the

conceptual drawing in figure 1. Figure 2

input attributes
(IDEFIX)

N
I Input

C Constraint (or control)
I _ constraint attributes

1 _ (IDEFlX)
output attributes

(IDEFlX)

Process _ N
O Output

° iMechanism N
(i.e. resource) mechanism attributes

(IDEF1X)

Figure 2 Nomenclature for IDEFO and
How IDEFlX Fits In

£

depicts the key to reading an IDEF0 drawing.

Note the acronym ICOM helps to identify the

key elements of an IDEF drawing where I

represents Input, C represents Constraint, O

represents Output and M represents

Mechanism. One of the key features of IDEF

is its ability to link the drawings to an

underlying database. Also, the drawings are

hierarchical to allow one to reveal more and

more detail as needed

5. Experiment Approach

The following steps were taken in

conducting the MOD process improvement

experiment:

a. Identify target process for

improvement.

b. Gather baseline cost data.

c. Define activities that comprise the

process using IDEF0

(referred to as AS-IS process).

d. Identify potential problem areas.

e. Identify the underlying business rules

using IDEF 1X

f. Develop improved process (referred

to as TO-BE process).

g. Quantify potential cost improvement

using ABC.

(1) Show main cost driver activities.

(2) Identify resource cost drivers,

e.g., needing specialized skill only

half-time but required to hire a full-

time person.

h. Measure the new process to verify

improvement.

6. Target Process Selection

In order to define the target process for

improvement, a typical mission life cycle
was first defined as follows:

- Develop System Requirements

- Design System

- Build and Test System

- Operate System

- Maintain System

This top level process is illustrated in figure

3. Although this figure applies specifically to

the development and use of a Mission

Operations Center (MOC), it was actually

derived from a higher level diagram of the

1330

fill5,

'i;ii

_ _i:_. ,_

....i!iii,_

,ii!_i_ill:i _

?_ii__,_

:iiiii!:-

i/ii_i' '
:,i_ :_+__

<,: •,

_:: i _

'iii

_H

/;?r

i_)ii ,

ii i i

SRR In-House Capabilities
Budget IDEF KEY

& Methods C1 C2 Limits

Science Req' ts Constraint

and S/C Reg'ts system and |
, Develop Performance |

Ops Concepts System Req'ts Spec +

A | Input Ou tpu t

&

I Design A7

System t

A2 Mechanism

:.I

Build

& Test _ O1

System Delivered System

(POCC ÷ CMS)
A3 Operate

System p 02

_eq'ts fo* Science Data
Generic

Kernels A4 trends

I data Maintain

• System

I Modify I

_Generlc | To In-House Needed Revs A5

| Kernal _.__Capabilities

&Methods M3

Developers

M1

Proj ec ts M

(MOM) Operators M4 Testers

Figure 3 Top level "AS-IS" Life Cycle Model

typical life cycle for the entire GDS,

The next step involved taking some gross

measurements of the different life cycle

phases to see where the largest portion of the

resources was spent. The build phase of the

life cycle was found to be an increasingly

smaller portion of the total cost. This was

due to the employment of reusable building

blocks. This meant that the major cost

drivers no longer resided in the generation of

software. They instead resided in the other

life cycle phases, primarily developing

system requirements and testing. Therefore

the greatest remaining potential for cost

savings was in these other phases. The

requirements analysis phase was thus chosen

as the target process for improvement.

7. Process Analysis

The "AS-IS" and "TO-BE" requirements

processes are illustrated in figures 4 and 5

respectively. Figure 6 shows the underlying

cost spreadsheets and figure 7 is an example

of the underlying entity relationship model.

A cursory examination of figure 4,

suggested the following problems:

a. Function A13 "Negotiate

Exceptions" is a trigger on Functions A11

and A12. That is, A13 is required to feed

certain previously identified exceptions back
to their source for reconsideration. This

reiteration (loop-back) multiplies the effort.

b. Additionally, there is conflict

between inputs into the "Analyze Mission

Req." from two different sources. This

indicates that the changes resulting from the

unresolved constraints and inputs

(exceptions) perturb the on-going preparation

of other requirements, necessitating

1331

/

/

In-House Capabilities

& Methods C2 SRR

C1

Science Req'ts

and S/C Req'ts

II Develop

Mission

Ops Conceptl Req'ts
12

All

Req'ts

(SORD or DMR II}

Modified i

Mission

Basic Exceptions

Analyze

Mission

Req'ts

MY2.50 A12

Acceptable Missior

'ts

Exceptions

_ Negotiate

<, Exceptions

Exceptions for MY3.50 AI3

further Considerat:

ts

Standing

Exceptions

System and

Performance

Req'ts Spec

,01

Req'ts for

Generic

Kernels

_02

Projects

(MOM)
M2

Operators

Developers

Figure 4 "AS-IS" method to develop system requirements

i

In-House Capabilities Budget

& Methods C2

Science and

S/C Req'ts

Ii

Ops

I2

/
Modified

Mission Req'ts

Analyze

Mission

.' Req'ts

//' AI2

Baseline Req'ts

Exceptions

)tions for

Considerat:

Negotiate

Exceptions

0.i0

I' System Generate

Definition System

T, am Req ' ts Req ' ts

AI4

MYr

Accepted Mission

'ts

Standing

Exceptions

System and

Performance

Req'ts Spec

Generic

Kernels

Projects M2

(MOM) Operators Developers

Figure 5 "TO-BE" method to develop system requirements

1332

i_::ii _

4 .i¸;¸

ii;(_ • _

i! __-_i
:i, _ _

i
H

:ii:ii_ii_

• !

H

(

!il/

i;

coordination. Thus, management and

developer resources, as well as operator and

projects' personnel time, is consumed

unnecessarily.

8. Process Improvement

The AS-IS process has been redesigned to

largely eliminate feedback as shown in fig. 5,

TO-BE, while retaining its basic

functionality. This was accomplished by

making the Developers, mechanism M3, and

their personal knowledge of the constraint

C2, "In-House Capabilities", available to

A11, which is the initiating point in the

requirements process. This early developer

involvement has removed many of the

information interfaces that used to require
translation and documentation "at-a-distance"

between All, A12 and A13, and that had

been burning up a significant amount of

manpower. To facilitate dynamic person-to-

person interaction, the process designers

specified there be a System Definition Team

(SDT) in order to ensure "eyeball-to-eyeball"

operator and developer physical proximity,

which eliminated the shuttling of documents

back and forth. The Requirements

Node , Develop System Requirements "AS4S" Developers IMyrs

A0 Develop end Operat'e e Project Ops Control Center 9.001[9.()0

_i i!i_i!ii}_ii_iiiii....._. "................:: '_ :........ _.........i_ _.-:i_........ _:!!.!..........

A121 Decompose Missi0n F_eq'z_ 0.60 0.60

A122 Document Exceptions 0.70 0.70
A123 ' Determine Acc, end Unacc. M ss on Reo'ts ' 1 20 1.20

A131 Evaluate by ProjiOps :_ 0,00 O'.00

A 132 ' Consider Possible Alternatives " ' 1.50 1.5(;

A133 ! . interact.on Issue s.:withAffeCt_d p.artie.s 2.001. 2.00

__ ,, ,,., ,..- .._: :

Develop Initial Ops Scenarios 0.00 0.00A141

A142

A143

A2

_,3,
A4

A5

A6

COmpare W'ah In-House Methods

IcJent!fy Performance Req'ts .

_.5o _.5o
1.50 1.50

0.00 0.00

'0.00 0,00

0;00 " '0.00

0.00 0.00

0.00 0.00

Design System

Build & Test System
Operate System

Maintain System

Modify Generic "Kernal..Req,ts

IN'ode Develop System Requiremen_ "TO-BE" Developers IM Yrs
I

:_:_:_:_:.......................:........................_.....................:.,._..._................... ::] _7_:

AI 11 Document Mission Req'ts 0.5 0.5
A'112 Compare with In-House Capabilities 0.5 0.5

A 113 Reconcile Differences 0_5-
....... 0.5....................... i:?:,! i:_!:i_!:i!:__:::_O;_

A121 Decompose MisSion Req'ts r '0.os b.05
A122 Develop Initial Ops Scenarios 0

A123 Determine Acc. and NonAcc. Req'ts - 0.05 0.O5

A131 Evaluate Documentation o.o5i o.os
,A132 Document Exceptions

0.005 0.05AJ 33 Interact on Issues with Affected Parties ' 0

A1A14143 DeveloplnitialOpsScerariOs i ' " ii: 'in
A142 Compare With In-House Methods

Identify Performance Req'ts . _)]

Figure 6 Underlying cost spreadsheets

1333

• i: •

SS I ON- REOT_-/2 "I

ncludes 1

MISS ION -SPECI F IC- RNQUI RNENT /4

I Pr U°_leddedf°brY / l

Figure 7 Example of underlying 1|

Generation System (RGS) replaced this

physical function by recording the

agreements in real time, thus furthering the

cost reduction effect.

9. Results

Chart 1 shows the results that were

achieved. Note that, in spite of the fact that

they were favored by very high levels of

reuse, previous missions still required

significant developer effort to get through the

requirements analysis process. The shaded

area indicates the newly installed process.

10. Future Efforts

The remainder of the life cycle can also be

SAMPEX !S/W KDSI, 180

DevMyrs
I%Reuse to Do Req

40 11

FAST 220 72 9
SWAS 220 87 7

XTE(AS-IS) 250 50 9

I_B_ iiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiii:_s_iiiiiiiiiiiii_i_iii!i_i!iiiiiiiiiiii_iliii!i',i!iiiiiiiiii_i_iS

Chart 1 Results of experiment; Only

developers' effort considered, no

management or publications

treated in this manner. Since technology

changes so quickly, this analysis, including

an activity cost breakdown, has to be

constantly monitored. The next step, once

these models are in place, would be to feed

the results into a simulator such as Work

Flow Analyzer to do probabilistic analysis

on the feedback loops.

11. Conclusion

Together, IDEF and ABC allow large

organizations to coordinate their processes

and to create a living blueprint for changing

and improving business practices. These

tools also provide a forum for each individual

to identify his or her viewpoint and to

comment on these processes from such a

perspective. For the business entity and its

organization to remain viable, and since the

primary cost savings potential is in the

process and not the product or product

architecture, these types of management

methods must be instituted along with such

items as product innovation. They in fact

provide a means to achieve process

innovation. Finally, without these type of

tools, large organizations find themselves in

the situation of making decisions without the

necessary metrics.

12. References

Kaplan, Robert S,, Management Accounting for

Advanced Technological Environments, Articles,

August 25, 1989.

Moravec, Robert D. & Yoemans, Micheal S.,

Using ABC to Support Business Re-Engineering in
the Department of Defense, Journal of Cost

Management, Vol 6, No 2, Summer 1992.

NIST, Integration Definition for Function

Modeling (IDEFO), FIPS Publication, Dec 21, 1993.

1334

